
Citation: Xue, T.; Yan, Z.; Meng, J.;

Wang, W.; Chen, S.; Wu, X.; Gu, F.;

Tao, X.; Wu, W.; Chen, Z.; et al.

Efficacy of Neurostimulations for

Upper Extremity Function Recovery

after Stroke: A Systematic Review

and Network Meta-Analysis. J. Clin.

Med. 2022, 11, 6162. https://doi.org/

10.3390/jcm11206162

Academic Editor: Tomás Segura

Received: 14 September 2022

Accepted: 13 October 2022

Published: 19 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Clinical Medicine

Article

Efficacy of Neurostimulations for Upper Extremity Function
Recovery after Stroke: A Systematic Review and Network
Meta-Analysis
Tao Xue 1,†, Zeya Yan 2,†, Jiahao Meng 2, Wei Wang 2, Shujun Chen 3, Xin Wu 2,4, Feng Gu 2, Xinyu Tao 2,
Wenxue Wu 2, Zhouqing Chen 2 , Yutong Bai 1,*, Zhong Wang 2,* and Jianguo Zhang 1,5,6,*

1 Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
2 Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
3 Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
4 Department of Neurosurgery, Soochow Ninth Hospital, Suzhou 215124, China
5 Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing 100061, China
6 Beijing Key Laboratory of Neurostimulation, Beijing 100054, China
* Correspondence: baiyutong@mail.ccmu.edu.cn (Y.B.); wangzhong761@163.com (Z.W.);

zjguo73@126.com (J.Z.)
† These authors contributed equally to this work.

Abstract: Background: Neurostimulations for the post-stroke recovery of upper extremity function
has been explored in previous research, but there remains a controversy about the superiority of dif-
ferent neurostimulations. Methods: Randomized controlled trials (RCTs) were searched in MEDLINE,
Embase, Cochrane Library and ClinicalTrials.gov, from 1 January 2000 to 1 June 2022. A conventional
pair-wise meta-analysis with a random-effect model was used to evaluate direct evidence. Bayesian
random effect models were used for network meta-analysis. The grading of the recommendations
assessment, development and evaluation (GRADE) approach was applied to assess the clinical quality
of the results. Results: A total of 88 RCTs, which enrolled 3491 participants, were included. For the
Fugl-Meyer Assessment-Upper Extremity score change from the baseline to the longest follow-up,
the following interventions showed a significant difference: VNS (MD = 4.12, 95%CrI: 0.54 to 7.80,
moderate certainty), cNMES (MD = 3.98, 95%CrI: 1.05 to 6.92, low certainty), FES (MD = 7.83, 95%CrI:
4.42 to 11.32, very low certainty), drTMS (MD = 7.94, 95%CrI: 3.71 to 12.07, moderate certainty),
LFrTMS (MD = 2.64, 95%CrI: 1.20 to 4.11, moderate certainty), HFrTMS (MD = 6.73, 95%CrI: 3.26
to 10.22, moderate certainty), and iTBS combined with LFrTMS (MD = 5.41, 95%CrI: 0.48 to 10.35,
moderate certainty). Conclusions: The neurostimulations above the revealed significant efficacy for
improving the upper limb function after stroke eased the suffering of the patient.

Keywords: stroke; neurostimulation; upper extremity; network meta-analysis; Fugl-Meyer
assessment

1. Introduction

Stroke is a serious cerebrovascular disease in which an artery supplying the brain
becomes occluded or haemorrhaged [1]. According to previous global research, there
were nearly 101 million people affected by stroke and 6.55 million deaths from stroke in
2019. It therefore represents a social and economic burden on individuals and families [2].
More than 80% of stroke survivors have been affected by hemiparesis of the contralateral
limbs, and the probability of recovery in the upper extremity is <65% of that of the lower
extremity [3–6]. Therefore, it is no exaggeration to say that the degree of upper extremity
recovery could be the main clinical predictor of the rest of a patient’s life [7].

Regrettably, only 20% of the stroke survivors who received conventional physical
rehabilitation return to normal life [8,9]. With advances in technology, neurostimulation
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technologies like neuromuscular electrical stimulation (NMES), transcranial direct cur-
rent stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), etc., have
been proven to show significant efficacy for the recovery of upper limb hemiplegia after
stroke [10–16]. While many systematic reviews have analyzed the efficacy of one technique
compared to another, or different forms of the same kind, none of them systematically
compared all neurostimulation technologies applied to the upper limb hemiplegia recovery
after stroke. Therefore, we prepared this network meta-analysis and the conclusion of our
research may be a more effective choice in clinical practice.

2. Materials and Methods
2.1. Study Protocol

This study protocol was registered in PROSPERO (CRD42021284405). Our research
followed the guidelines of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) extension statement for NMA [17,18]. Additionally, we evalu-
ated the quality and clinical significance of our research results following the grading of
recommendations assessment, development and evaluation (GRADE) approach [19].

2.2. Eligibility Criteria

The inclusion criteria are as follows: (1) Study type, RCT; (2) restriction of language,
i.e., English; (3) participants, adults ≥18 years with a history of unilateral stroke, whether
ischemic or haemorrhagic; (4) interventions, vagus nerve stimulation (VNS), transcuta-
neous auricular VNS (taVNS), MCS, cyclic NMES (cNMES), EEG-triggered NMES (EN-
MES), functional electrical stimulation (FES), somatosensory electrical stimulation (SES) or
transcutaneous electrical nerve stimulation (TENS), low frequency rTMS (LFrTMS), high
frequency rTMS (HFrTMS), dual rTMS (drTMS), intermittent theta burst stimulation (iTBS),
continuous TBS (cTBS), repetitive peripheral magnetic stimulation (rPMS) or functional
magnetic stimulation (FMS), anodal tDCS (atDCS), cathodal tDCS (ctDCS), dual tDCS
(dtDCS) and rehabilitation only (control); and (5) outcomes, at least evaluated the Fugl-
Meyer Assessment-Upper Extremity (FMA-UE) score, which is considered the international
criterion of assessing upper extremity motor paralysis [20].

The exclusion criteria are as follows: (1) Study type, conference abstracts, comments,
reviews, protocols, and meta-analyses; (2) participants: <18 years or with neurodegenera-
tive disorders, medical or psychiatric disorders, other intracranial diseases (i.e., intracranial
space-occupying lesion), and contraindications to neurostimulation according to different
types; and (3) interventions and control, the combination of one neurostimulation and
specific therapy (i.e., mirror therapy, virtual reality technology) compared to rehabilitation
or neurostimulation only.

2.3. Search Strategy

To identify the relevant literature, two investigators (TX and ZYY) searched MED-
LINE, Embase, the Cochrane Library, and the Clinicaltrials.gov for published articles from
1 January 2000, to 1 June 2022, independently. The full search strategies applied to different
databases are available in the Supplemental Materials (part A). The investigators also
screened the relevant articles, such as systematic reviews and meta-analyses, to ensure the
completeness of the included study.

2.4. Study Selection and Data Collection

Two investigators (TX and ZYY) assessed the eligibility of all the records searched
from four databases according to the criteria above. Duplicates and articles, such as
conference abstracts and comments, were excluded using EndNote X9 (Clarivate Analytics,
Philadelphia, PA, USA). Further details of the selection process are shown in the flow
diagram (Figure 1). In addition, we summarized the definitions and characteristics of each
subtype of neurostimulation in Table 1. After selection and evaluation, the basic information
of the included studies was extracted and shown in the Supplemental Materials (part B
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and C). During this process, any disagreements were discussed with the third investigator
(JHM) to make the ultimate decision.
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2.5. Outcomes

This research judged the following outcomes as crucial: Change in FMA-UE score
from baseline to the longest follow-up (LFU), end of treatment (EOT), one month, and three
months. The following outcomes were judged to be important, but not crucial: Change
in Action Research Arm Test (ARAT) and Box and Block Test (BBT) from baseline to the
longest follow-up. Given that the number of adverse events in most studies was zero, we
gave up on the calculation of safety outcomes. Information on safety outcomes is available
in the Supplemental Materials (part C).

2.6. Statistical Analysis

NMA was performed based on a Bayesian framework by applying the Markov chain
Monte Carlo methods in the R software 3.5.2 (R Foundation for Statistical Computing,
Vienna, Austria) using the ‘gemtc’ package; this involved four chains with over-dispersed
initial values and Gibbs sampling based on 50,000 iterations after a burn-in phase of 20,000
iterations [21]. The efficacy of numerous neurostimulations was reported through the
mean difference (MD) with a 95% credible interval (CrI) and was compared via direct
and indirect evidence. As NMA is based on the consistency between direct and indirect
evidence, we used a node-splitting method to confirm the consistency between direct and
indirect evidence, estimating the local inconsistency, with a p value >0.05 meaning good
consistency. The deviance information criterion (DIC) was used to assess the goodness-
of-fit of the network model. The DIC values between consistent and inconsistent models
were compared to evaluate global inconsistency, with a lower DIC value indicating a
better model.
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Table 1. Characteristics of different neuromodulation techniques, including definition, sample size, age, gender, years since stroke, FMA-UE at baseline and side of
hemiplegic paralysis.

Neuromodulation. Subtype Definition Sample Size Age,
Mean ± SD Female, n (%) Years Since Stroke,

Mean ± SD
FMA-UE,

Mean ± SD

Hemiplegic
Paralysis,
Left/Right

1. VNS
(vagus nerve
stimulation)

1.1 VNS
A device is implanted into patient body to

stimulate the cervical branch of vagus nerve
directly through a simple surgery.

70 58.99 ± 10.88 25 (35.71%) 2.75 ± 2.13 34.57 ± 8.53 41/29

1.2 taVNS

A noninvasive technique stimulates the other
branch of the vagus nerve in body surface, like

external auditory channel at the inner side
of the vagus.

17 60.06 ± 13.29 8 (47.06%) 3.27 ± 6.54 19.47 ± 7.20 4/6

2. MCS
(Motor cortex
stimulation)

-

An invasive electrical stimulation which places
the electrode at epidural area around the

associated site of motor cortex activation through
a craniotomy.

122 55.86 ± 11.17 52 (42.62%) 4.95 ± 5.49 36.91 ± 6.83 49/73

3. NMES/FES
(Neuromuscular

electrical stimulation
/Functional electrical

stimulation)

3.1 cNMES

This stimulation is provided by electrically
activating hemiplegia muscle at a set frequency
while the intensity at or above motor threshold.
During the entire process, patient is generally a

passive participant.

278 58.73 ± 12.48 107 (38.49%) 0.46 ± 1.53 27.29 ± 13.88 123/123

3.2 ENMES

Patient is actively involved in the training and
the electrical stimulation is provided when EMG

signals generated by motion exceed a
pre-set threshold.

113 57.47 ± 12.29 39 (34.51%) 1.04 ± 2.39 34.02 ± 15.52 57/55

3.3 FES

It refers that tetanic muscle contractions of
hemiplegia limb are induced to assist or reinstate

some kinds of goal-directed movement, while
patients or therapists could control the timing or

intensity of stimulation.

156 55.8 ± 14.05 48 (30.77%) 0.70 ± 1.23 25.53 ± 11.39 72/63

4. SES/TENS
(Somatosensory

electrical stimula-
tion/Transcutaneous

nerve electrical
stimulation)

-

An intervention involves low intensity electrical
stimulation of peripheral nerves, which merely

reaches the sensory threshold and below the
motor threshold.

224 60.98 ± 13.95 102 (45.54%) 1.32 ± 2.01 30.47 ± 20.54 99/105



J. Clin. Med. 2022, 11, 6162 5 of 22

Table 1. Cont.

Neuromodulation. Subtype Definition Sample Size Age,
Mean ± SD Female, n (%) Years Since Stroke,

Mean ± SD
FMA-UE,

Mean ± SD

Hemiplegic
Paralysis,
Left/Right

5. rTMS/TBS
(Repetitive

transcranial magnetic
stimulation

/Theta burst
stimulation)

5.1 LFrTMS

A non-invasive magnetic stimulation modulates
cortical excitability in stroke, and low-frequency

rTMS (≤1 Hz) decreases the cortical excitability of
the primary motor cortex of unaffected limb.

586 59.97 ± 12.84 206 (35.15%) 0.90 ± 2.33 34.69 ± 16.00 246/262

5.2 HFrTMS Similarly, high-frequency rTMS (≥5 Hz) facilitates
the cortical excitability of the hemiplegic limb. 77 57.84 ± 9.13 24 (31.17%) 0.03 ± 0.04 28.24 ± 15.06 38/39

5.3 drTMS
LF-rTMS applies to the unaffected side

while HF-rTMS to the hemiplegic side for
synergistic effect.

35 55.90 ± 8.89 5 (14.29%) 0.05 ± 0.01 38.14 ± 18.98 11/10

5.4 iTBS
A variant of rTMS modulated ipsilesional primary
motor cortex intermittently with a specific pattern

of stimulation sequences in a shorter time.
49 59.7 ± 12.07 15 (30.61%) 0.45 ± 0.32 32.27 ± 16.55 17/20

5.5 cTBS
Continuous theta burst stimulation brings down
the excitability of the contralateral primary motor

cortex for the rehabilitation of stoke.
7 61.3 ± 9.8 1 (14.29%) 1.21 ± 0.13 19.4 ± 14.2 2/5

6. rPMS/FMS
(Repetitive peripheral
magnetic stimulation
/Functional magnetic

stimulation)

-
A magnetic technology stimulates deep

regions of muscles evoking muscle contraction
with nearly no pain.

60 55.78 ± 13.02 19 (31.67%) 0.44 ± 1.19 27.55 ± 16.64 27/23

7. tDCS
(Transcranial direct
current stimulation)

7.1 atDCS

A body surface direct current stimulation
places the anode slice on the motor cortex area of
the affected side and facilitates the depolarization

of neurons.

176 62.80 ± 11.70 70 (39.78%) 1.37 ± 1.99 28.65 ± 17.67 70/72

7.2 ctDCS
On the contrary, cathodal tDCS is mounted on the

the scalp surface of not damaged brain
hemisphere, reducing the neuronal firing.

109 63.48 ± 10.13 45 (41.28%) 0.34 ± 0.93 22.45 ± 20.24 57/52

7.3 dtDCS

The anode slice of tDCS device is mounted on the
ipsilesional side while the cathode on the

contralateral side at the same time to improve the
rehabilitation of extremity function after stroke.

108 59.00 ± 11.26 37 (34.26%) 1.91 ± 1.54 36.79 ± 17.37 52/56
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To further analyze the NMA heterogeneity, we conducted a meta-regression anal-
ysis for the change in FMA-UE compared to a random consistent model, including the
following concomitant variables: Mean age, percentage of females, mean FMA-UE at
baseline, percentage of haemorrhagic stroke, sample size, and mean duration since the
stroke. Meanwhile, we performed a sensitivity analysis of NMA to evaluate the small study
effect by comparing the DIC difference between the fixed model and the random model. A
difference in DIC < 5 indicates no obvious influence.

The surface under the curve ranking area (SUCRA) was calculated to sequence the
efficacy of the interventions, with a larger area under the curve indicating a better rank for
the therapy. To make the results more explicit, we rearranged the SUCRA for 23 types of
therapies according to the four primary outcomes. The mean cumulative probabilities with
each intervention represent the ranking probabilities to some extent.

The GRADE approach was used to assess the direct comparison of pair-wise analyses
and to evaluate the direct and indirect evidence of NMA, rating the certainty of the results
of each comparison as high, moderate, low, or very low. We classified the interventions
into three categories: The most effective, the least effective and inferior to the most ef-
fective/superior to the least effective according to the magnitude of effects, adapting the
minimally contextualised framework [19]. Additionally, we used ‘Maybe’ to mark the low
or very low certain evidence.

2.7. Risk of Bias

The risk of bias for the included studies was assessed with Review Manager 5.4
software (The Nordic Cochrane Center, Copenhagen, Denmark) and the Cochrane Collabo-
ration’s risk-of-bias tool. Six fields were evaluated as follows: Selection bias, performance
bias, detection bias, attrition bias, reporting bias, and other potential biases. Each bias
criterion was classified into three evaluations: Low, unclear, and high. Funnel plots were
evaluated to analyze the publication bias for outcomes. Conflicts were resolved through
discussion with the third author (WW) until agreement was reached.

3. Results
3.1. Search Strategies and Study Characteristics

A total of 3151 studies were identified from four databases, and 2011 records were
removed before screening due to duplication. Then, by performing a simple screening
for titles and abstracts, we excluded 803 articles as not being directly relevant. Among
the remaining 337 reports assessed for eligibility, 54 conference abstracts, 13 comments,
65 reviews, 43 protocols, and 29 meta-analyses and RCTs inconsistent with the abovemen-
tioned eligibility criteria were excluded. Finally, 88 RCTs containing eight major kinds of
neurostimulation were included in our research and the catalogue of the included studies
is declared in the Supplementary Materials (part D), including 3491 patients. The study
selection process and a schematic diagram of neurostimulation are shown in Figure 1.

3.2. FMA-UE

Figure 2 shows the network plots for the score change of FMA-UE from baseline to
the LFU, EOT, one month, and three months. The network estimates of all comparisons
are illustrated in Figure 3. In addition, pair-wise meta-analysis and sensitivity analysis of
FMA-UE was also conducted (Table 2) and the details were shown in the Supplementary
Materials (part E and F). Further details of the GRADE evaluation can be found in the
Supplementary Materials (part G).
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Table 2. Summary and detailed effect sizes from the pair-wise meta-analysis of efficacy outcomes from all the trials using the random effects models.

Outcomes
No. of Trials

Contributing to the
Meta-Analysis

No. of Participants
Contributing to the

Meta-Analysis

Effect Size Heterogeneity
GRADE

MD (95% CI) p Value I2 (%) χ2 p Value

1. FMA-UE longest follow-up (compared with control)

VNS 3 145 3.49 (1.56, 5.41) 0.0004 0 1.12 0.57 ⊕⊕⊕# Moderate *
taVNS 2 33 2.95 (0.90, 5.00) 0.005 0 0.09 0.77 ⊕⊕⊕# Moderate *

ENMES 1 15 2.16 (−14.62,
18.94) 0.80 N/A N/A N/A ⊕⊕## Low *, ##

cNMES 4 111 4.30 (−0.38, 8.97) 0.07 45 5.41 0.14 ⊕⊕## Low *, $
SES 6 252 1.73 (0.73, 2.73) 0.0007 23 6.47 0.26 ⊕⊕## Low *, #

MCS 4 208 2.63 (0.32, 4.95) 0.03 28 4.19 0.24 ⊕### Very low **, #
dtDCS 8 205 1.48 (−0.09, 3.05) 0.06 0 2.86 0.90 ⊕⊕⊕⊕ High
atDCS 10 361 1.64 (−1.50, 4.77) 0.31 45 16.44 0.06 ⊕⊕⊕# Moderate $
ctDCS 5 172 1.78 (−1.72, 5.29) 0.32 0 0.22 0.99 ⊕⊕⊕⊕ High
drTMS 2 70 6.28 (−2.12, 14.68) 0.14 22 1.28 0.26 ⊕⊕⊕# Moderate #

LFrTMS 21 948 2.99 (1.34, 4.63) 0.0004 65 56.91 <0.0001 ⊕⊕⊕# Moderate $
HFrTMS 4 146 7.11 (4.40, 9.82) <0.00001 0 1.49 0.68 ⊕⊕⊕# Moderate *

iTBS 5 98 3.10 (−1.90, 8.10) 0.22 0 1.93 0.75 ⊕⊕⊕⊕ High
cTBS 1 13 2.97 (1.26, 4.68) 0.0007 N/A N/A N/A ⊕⊕⊕⊕ High
rPMS 2 82 1.66 (−4.15, 7.47) 0.58 0 0.51 0.47 ⊕⊕## Low *, #

cNMES+LFrTMS 1 16 8.00 (−7.84, 23.84) 0.32 N/A N/A N/A ⊕### Very low *, ##
SES+dtDCS 1 19 4.64 (1.30, 7.98) 0.006 N/A N/A N/A ⊕⊕⊕# Moderate *

LFrTMS+atDCS 1 30 1.20 (−0.33, 2.73) 0.12 N/A N/A N/A ⊕⊕⊕# Moderate *
LFrTMS+ctDCS 1 30 0.87 (−0.27, 2.01) 0.13 N/A N/A N/A ⊕⊕⊕# Moderate *

iTBS+atDCS 1 24 4.33 (−2.93, 11.59) 0.24 N/A N/A N/A ⊕⊕## Low *, #
iTBS+LFrTMS 2 47 4.84 (−0.22, 9.89) 0.06 0 0.86 0.35 ⊕⊕⊕# Moderate #

2. FMA-UE end of treatment (compared with control)

VNS 3 145 2.83 (1.37, 4.30) 0.0002 0 1.26 0.53 ⊕⊕⊕# Moderate *
taVNS 2 33 3.54 (2.31, 4.77) <0.00001 0 0.42 0.52 ⊕⊕⊕# Moderate *

ENMES 1 15 3.96 (−13.51,
21.43) 0.66 N/A N/A N/A ⊕### Very low *, ##

cNMES 3 65 4.28 (−1.74, 10.30) 0.16 63 5.37 0.07 ⊕### Very low *, #, $
SES 6 252 1.70 (0.33, 3.07) 0.01 45 9.02 0.11 ⊕⊕## Low #, $

MCS 3 184 0.44 (−1.04, 1.93) 0.56 0 1.55 0.46 ⊕⊕## Low **
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Table 2. Cont.

Outcomes
No. of Trials

Contributing to the
Meta-Analysis

No. of Participants
Contributing to the

Meta-Analysis

Effect Size Heterogeneity
GRADE

MD (95% CI) p Value I2 (%) χ2 p Value

dtDCS 8 205 0.95 (−0.53, 2.42) 0.21 0 5.83 0.56 ⊕⊕⊕⊕ High
atDCS 10 361 0.80 (−1.10, 2.70) 0.41 10 9.98 0.35 ⊕⊕⊕⊕ High
ctDCS 5 172 1.89 (−1.25, 4.81) 0.25 0 0.83 0.93 ⊕⊕⊕⊕ High
drTMS 2 70 5.47 (3.25, 7.69) <0.00001 0 0.34 0.56 ⊕⊕⊕⊕ High

LFrTMS 19 823 1.83 (0.69, 2.96) 0.002 26 24.35 0.14 ⊕⊕⊕# Moderate #
HFrTMS 4 146 3.21 (0.17, 6.25) 0.04 34 4.56 0.21 ⊕⊕## Low *, #

iTBS 4 84 2.62 (−3.06, 8.29) 0.37 0 1.62 0.65 ⊕⊕⊕# Moderate #
cTBS 1 13 2.12 (0.40, 3.84) 0.02 N/A N/A N/A ⊕⊕⊕# Moderate #
rPMS 2 82 −0.23 (−6.82, 6.37) 0.95 11 1.12 0.29 ⊕⊕## Low *, #

cNMES+LFrTMS 1 16 8.00 (−7.84, 23.84) 0.32 N/A N/A N/A ⊕### Very low *, ##
SES+dtDCS 1 19 4.64 (1.30, 7.98) 0.006 N/A N/A N/A ⊕⊕⊕# Moderate *

LFrTMS+atDCS 1 30 0.80 (0.00 1.60) 0.05 N/A N/A N/A ⊕⊕## Low *, #
LFrTMS+ctDCS 1 30 0.74 (−0.32, 1.80) 0.17 N/A N/A N/A ⊕⊕⊕# Moderate *

iTBS+atDCS 1 24 4.33 (−2.93, 11.59) 0.24 N/A N/A N/A ⊕⊕⊕# Moderate #
iTBS+LFrTMS 2 47 4.84 (−0.22, 9.89) 0.06 0 0.86 0.35 ⊕⊕⊕# Moderate #

3. FMA-UE 1 month (compared with control)

VNS 1 17 2.23 (−6.41, 10.87) 0.61 N/A N/A N/A ⊕⊕⊕# Moderate #
taVNS 1 21 4.34 (2.95, 5.73) <0.00001 N/A N/A N/A ⊕⊕⊕# Moderate *

SES 1 19 5.92 (−0.17, 12.01) 0.06 N/A N/A N/A ⊕⊕⊕# Moderate #
MCS 3 200 2.03 (−0.47, 4.54) 0.11 58 4.71 0.09 ⊕### Very low **, $

dtDCS 1 19 −0.40 (−5.02, 4.22) 0.87 N/A N/A N/A ⊕⊕## Low *, #
atDCS 3 88 6.37 (1.00, 11.73) 0.02 0 0.98 0.61 ⊕⊕⊕# Moderate #
ctDCS 2 28 1.61 (−6.64, 9.86) 0.70 0 0.09 0.76 ⊕⊕⊕# Moderate #

drTMS 1 29 −0.82(−25.33,
23.69) 0.95 N/A N/A N/A ⊕⊕## Low ##

LFrTMS 7 493 3.28 (0.01, 6.55) 0.05 85 41.15 <0.00001 ⊕⊕## Low #, $
HFrTMS 2 88 4.33 (1.49, 7.16) 0.003 7 1.08 0.30 ⊕⊕⊕⊕ High

cTBS 1 13 2.97 (1.26, 4.68) 0.0007 N/A N/A N/A ⊕⊕⊕⊕ High
LFrTMS+atDCS 1 30 1.20 (−0.33,2.73) 0.12 N/A N/A N/A ⊕⊕⊕# Moderate *
LFrTMS+ctDCS 1 30 0.87 (−0.27, 2.01) 0.13 N/A N/A N/A ⊕⊕⊕# Moderate *
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Table 2. Cont.

Outcomes
No. of Trials

Contributing to the
Meta-Analysis

No. of Participants
Contributing to the

Meta-Analysis

Effect Size Heterogeneity
GRADE

MD (95% CI) p Value I2 (%) χ2 p Value

4. FMA-UE 3 month (compared with control)

VNS 2 125 3.14 (1.08, 5.21) 0.003 0 0.32 0.57 ⊕⊕⊕⊕ High
taVNS 1 21 3.22 (0.48, 5.96) 0.02 N/A N/A N/A ⊕⊕## Low *, #

ENMES 2 42 −2.61 (−8.19, 2.98) 0.36 0 0.35 0.55 ⊕⊕## Low *, #
SES 2 45 0.65 (−2.15, 3.44) 0.65 0 0.04 0.83 ⊕⊕⊕# Moderate *

MCS 3 184 2.01 (−1.42, 5.45) 0.25 47 3.81 0.15 ⊕### Very low **, &
atDCS 4 161 3.54 (−1.43, 8.51) 0.16 0 1.92 0.59 ⊕⊕⊕⊕ High
ctDCS 2 78 1.12 (−5.66, 7.91) 0.75 0 0.04 0.84 ⊕⊕⊕# Moderate #
drTMS 2 70 7.48 (3.35, 11.61) 0.0004 4 1.04 0.31 ⊕⊕⊕⊕ High

LFrTMS 4 299 3.76 (−0.57, 8.09) 0.09 68 9.52 0.02 ⊕⊕⊕# Moderate &
HFrTMS 3 116 5.39 (2.44, 8.34) 0.0003 0 1.04 0.59 ⊕⊕⊕# Moderate *

iTBS 1 14 4.99 (−3.33, 13.31) 0.24 N/A N/A N/A ⊕⊕## Low *, #

MD: mean difference; CI: confidence interval; N/A: Not Applicable; * Limitations (risk of bias); ** Severe limitations (risk of bias); # Imprecision; ## Severe imprecision; $ Inconsistency;
& Indirectness. “High”, “Moderate”, “Low and “Very low” explain these symbols, to be specific, ⊕⊕⊕⊕ for high, ⊕⊕⊕# for moderate, ⊕⊕## for low and ⊕### for very low.
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Figure 2. Network plots of available direct comparisons. Change in FMA-UE from baseline to longest
follow-up (A), the end of treatment (B), one month (C), and three months (D). Each node (solid circle)
stands for neurostimulation or rehabilitation only. The size of the nodes is proportional to the number
of participants (i.e., sample size) involved in the specific intervention. The solid lines link treatments
with direct comparison with the thickness proportional to the number of trials.

Figure 4 reveals the classification of interventions compared to rehabilitation only.
For the primary outcomes of FMA-UE LFU, interventions such as VNS (4.12, 95%CrI 0.54
to 7.80; moderate certainty), cNMES (3.98, 95%CrI 1.05 to 6.92; low certainty), FES (7.83,
95%CrI 4.42 to 11.32; very low certainty), drTMS (7.94, 95%CrI 3.71 to 12.07; moderate
certainty), LFrTMS (2.64, 95%CrI 1.20 to 4.11; moderate certainty), HFrTMS (6.73, 95%CrI
3.26 to 10.22; moderate certainty), and iTBS + LFrTMS (5.41, 95%CrI 0.48 to 10.35; moderate
certainty) showed a significant difference, with FES, drTMS, and HFrTMS proving to be
among the most effective compared to rehabilitation. As for the outcomes of FMA-UE
EOT, VNS (3.28, 95%CrI 0.22 to 6.44; moderate certainty), taVNS (3.30, 95%CrI 0.30 to 6.25;
moderate certainty), cNMES (3.60, 95%CrI 0.70 to 6.47; low certainty), FES (6.90, 95%CrI
3.69 to 10.16; very low certainty), drTMS (4.51, 95%CrI 0.63 to 8.30; high certainty), LFrTMS
(1.63, 95%CrI 0.24 to 3.00; moderate certainty), HFrTMS (3.14, 95%CrI 0.33 to 6.10; low
certainty), and iTBS + LFrTMS (5.06, 95%CrI 0.33 to 9.71; moderate certainty) showed
statistical superiority compared to rehabilitation alone. FES was among the most effective.
After treatment for one month, atDCS (6.65, 95%CrI 0.31 to 12.76; moderate certainty) and
LFrTMS (3.04, 95%CrI 0.00 to 5.99; low certainty) showed obvious advantages of improving
the FMA-UE. Moreover, at three months, drTMS (8.03, 95%CrI 3.93 to 12.11; high certainty)
and HFrTMS (5.00, 95%CrI 1.29 to 8.82; moderate certainty) revealed significant statistical
differences to with MID, both being among the most effective. According to the modified
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SUCRA format, the mean cumulative probability of FES ranks first (78.38%); iTBS + LFrTMS
(75.84%), and drTMS (74.47%) came in second and third, respectively (Figure 5).
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3.3. Safety

Most of the neurostimulations were safe and well tolerated. Of the included stud-
ies, non-invasive interventions, such as rTMS, tDCS, and taVNS, almost mentioned or
reported no adverse events (AEs). Furthermore, most of the adverse events mentioned
were common and included skin irritation, rash, and headache. The adverse events of
invasive neurostimulation such as MCS and VNS usually involve infection and temporary
pain, which are related to the invasive operation. Details on the AEs of the 88 studies are
summarized in the Supplementary Materials (part C).

3.4. ARAT and BBT

The ARAT and BBT results are shown in our Supplementary Materials (part H and I).
None of neurostimulation therapy showed significant difference compared to rehabilita-
tion only.

3.5. Network Meta-Regression and Sensitivity Analysis

The meta-regression analysis demonstrated age, sex, baseline of mean FMA-UE, type
of stroke, sample size and mean time since stroke did not influence the outcome for the
change of FMA-UE (part J). As for the NMA sensitivity analysis, we found no obvious
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difference between the fixed model and random model. The DIC difference of all the results
were <5 (part K).

3.6. Network Heterogeneity and Consistency

The results showed no obvious local inconsistency and heterogeneity (part L, M, N
and O). Further construction of the global inconsistency model also showed that the DIC
difference between them was <10 (part K), indicating that the results of the consistency
model are reliable.

3.7. Risks of Bias

The risks of bias for all the included studies are shown on part P of the Supplementary
Materials. The major risks of bias concentrate on blinding of participants and personnel
(performance bias), with nearly 40% showing a high risk of bias. The analysis results of
selection bias showed no high risk of bias, with a few unclear risks of bias. As for the
remaining fields of bias, including detection, attrition reporting, and other bias, the total
percentage of risk of bias was less than 20%. More details are shown in the Supplementary
Materials, including the funnel plot for publication bias, which shows no obvious bias
(part Q).

4. Discussion

Generally, we conducted this NMA based on 88 RCTs, which enrolled 3491 participants
to distinguish the efficacy of neurostimulations and the combination of them. VNS, drTMS,
LFrTMS, HFrTMS, and iTBS + LFrTMS revealed significant improvements in neurological
function after stroke, with high or moderate certainty evidence for the primary results of
FMA-UE LFU. Additionally, cNMES and FES also showed superiority to a certain extent, as
compared to rehabilitation alone, albeit with low or very low certainty evidence. Moreover,
drTMS and HFrTMS are among the most effective, and FES may be among the most
effective based on our data analysis results.

Both types of VNS have proven effects in the rehabilitation of neurological dis-
eases [22,23]. The latest meta-analysis conducted by Xie et al. systematically confirmed
the efficacy of VNS and taVNS [24]. This is largely consistent with our pair-wise analysis
results. Certainly, the evidence of four FMA-UE outcomes in our research is nearly all
moderate certainty, demonstrating the clinical reliability of both. It is worth noting that
the efficacy of taVNS has recently been confirmed by Liu et al. again. Moreover, taVNS
seems to be more promising because it is easy to use at home and could be proposed as a
complementary treatment [25].

tDCS is one of the most widely investigated, non-invasive electrical brain stimula-
tions [26]. However, only atDCS revealed a significant improvement in the results of
FMA-UE one month with moderate certainty, both in the results of pair-wise meta-analysis
and NMA. As has been proven by Stephen Bornheim et al., atDCS seems to be an effective
technique to accelerate functional recovery when applied in the acute stages of stroke. They
used the change of the Wolf Motor Function Test as the primary outcome, which revealed
significant differences at one month [27]. However, according to the conclusion drawn
by Bernhard Elsner et al., ctDCS is a more promising option to improve the capacity in
activities of daily living (ADL), while all tDCS seem invalid for improving FMA-UE [28].
Considering these results, more research, including more comprehensive evaluation criteria,
need to be conducted.

rTMS is a non-invasive magnetic stimulation that modulates cortical excitability [29–32].
Through our NMA, we found that HFrTMS, LFrTMS, and drTMS all revealed a statistical
difference compared to rehabilitation alone. Meanwhile, these showed almost confirmed ef-
ficacy in FMA-UE results through pair-wise meta-analysis. Moreover, according to SUCRA
results, drTMS is superior to others, followed by HFrTMS. It is worth noting that the time
from the onset of stroke to the evaluation of outcomes in these modulations is <3 months
for all. As the previous literature suggests, there is a natural biological recovery process
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after stroke, apparently in the first one to three months, and primitive clinical, electrophysi-
ological, and imaging parameters can predict ultimate clinical outcomes in a large number
of patients [6,33]. Moreover, some research demonstrated that the Fugl-Meyer scores five
days after stroke predict the score at six months post-stroke [34,35]. Thus, results of the
current study are only statistically significant and we cannot ignore the natural recovery
effect after stroke.

Unexpectedly, TBS, as a novel form of rTMS, is supposed to have more rapid and
powerful effects than rTMS, but revealed no statistical advantage with the available network
comparison of LFrTMS, irrespective of iTBS or cTBS [36]. In pair-wise analysis, somewhat
differently, cTBS showed efficacy for the recovery of stroke to some degree, but with a lack
of long-term research beyond three months. As for the combined application of iTBS and
LFrTMS, only one of the included studies evaluated its efficacy, which is insufficient to
come to any reliable conclusions.

As for cNMES and FES, despite showing some degree of significant difference, they
do not appear to be as reliable as the neurostimulations above. In particular, FES has
prominent efficacy compared to most neurostimulations, but with very low certainty
simultaneously, ranking first in SUCRA results of FMA-UE. Moreover, regrettably, the
lack of direct comparison between FES and rehabilitation means that no further pair-wise
analysis is possible. Similarly, cNMES also shows no significant difference in pair-wise
analysis. Hence, we cannot make further verification and more studies are needed to
confirm their effectiveness. In addition, given that FES is a widespread modality used by
rehabilitation specialists, FES may be more effective modalities for stroke and is a helpful
dataset for those who treat poststroke patients.

eNMES, SES, MCS, dtDCS, and rPMS have proven efficacy according to previous
literature, ranking in the middle level in this research, with no obvious statistical differences.
We believe that reasons, such as lack of sufficient direct or indirect comparisons, may lead
to inadequate verification of their efficacy. Therefore, we have reservations about the results
of this component of our study.

Several limitations cannot be avoided in our analysis. First, as objective limitations of
RCTs on neurostimulation, the sample size of major studies was restricted to those with
more than 100 participants. In addition, the sample size differs considerably between the
different neuromodulation modalities. For example, 33 for taVNS compared to 146 for
HRrTMS. These may lead to a bias in inclusion and reduce the universality of the results in
this paper. Second, in most of the included studies, the follow-up was <3 months; thus, we
cannot explore the long-term effects of these therapies. Additionally, years since a stroke
for the all modalities of TMS is very short, while it is much longer for VNS. This difference
may influence the outcome. Then, considering the lack of direct head-to-head comparison
between some neurostimulations, such as HFrTMS and drTMS, our conclusions based on
indirect comparisons should be treated with caution. Moreover, head-to-head comparisons
of the impact of a particular modality in a chronic stroke population with an acute stroke
population will lead to divergent outcome results. Additionally, we cannot discount
the possibility that the use of a "new" therapy will have a psychological impact on the
patients being treated. Finally, the number of present studies comparing the combination
of different neurostimulations was relatively low, which may lead to bias, and the results
were unsatisfactory.

5. Conclusions

Through our analysis, VNS, taVNS, atDCS, drTMS, HFrTMS LFrTMS, cNMES, FES
and iTBS + LFrTMS revealed significant efficacy to various degrees with different certainty
levels. Our findings would be helpful for the clinical decisions made for the recovery of
stroke. In the foreseeable future, more research directed at restorative neurostimulation
may improve the prognosis of patients after stroke.
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